
��������������������������������������		��

�� �� !!������������ ��������� �

�

�

"# $%�������&�'$()�)���*�+��,��-�

�

Performance Analysis of Data Mining Algorithms

Abstract: Mining association rules are widely studied in data mining society. In this paper, we analyze the
performance measure method of support–confidence framework for mining association rules, from which we
implement and analyses data mining method by taking some parameter like time taken to generate frequent item
set, no. of item generation, data size and varying the min support on different data set. And compare the
experimental result of these algorithms. Experimental results show the generated rules and item set by. The
execution time of all the algorithms is vary for different datasets with a variation in Min_Support. The running time
of different frequent item set mining algorithms depends a lot on the structure of the data set.

Keywords: Data Mining, Frequent Items Data Set, Apriori Algorithm.

1. Introduction
Data mining is a process of discovering previously unknown and useful information from large databases. The
most widely used data mining technologies include association rules discovery, clustering, classification, and
sequential pattern mining Among them, the most popular technology is association rules discovery, which is
mining the possibility of simultaneous occurrence of items, and then building relationships among them in
databases. Association rules mining can be divided into two parts: find all frequent item sets, and generate
reliable association rules straightforward from all frequent item sets. Because frequent itemsets mining is the
most time-consuming procedure, it plays an essential role in mining association rules. The algorithms developed
for mining frequent item sets can be classified into two types: the first is the candidates item sets generation
approach, such as Apriori algorithm called Apriori-like; another aspect is a method without candidate item sets-
generation approach, such as FP-growth algorithm called FP-growth-like.

2. Frequent Item set Mining
The task of frequent item set mining was first introduced by Agrawal in 1993. A frequent item set is a set of items
that appears at least in a pre-specified number of transactions. Frequent item sets are typically used to generate
association rules. The task of frequent item set mining is defined as follows:

Let I be a set of items. A set { X i } k = � I is called an item set, or a k-item set, if it contains k items. A
transaction over I is a couple T = (tid, I) where tid is the transaction identifier and I is an item set. A transaction T =
(tid, I) is said to support an item set X , if X � I .A transaction database D over I is a set of transactions over I. The
support of an item set X in D is the number of transactions in D that supports X:

Support(X ,D) ={tid | (tid, I) � D, X � I}

The frequency of an item set X in D is the probability of X occurring in a transaction T � D :

Frequency(X ,D) = P(X) = Support(X ,D)

Note that |D| = support ({}, D). An item set is called frequent if its support is no less than a given absolute minimal
support threshold abs, with 0 � �abs � |D|. The frequent item sets discovered does not reflect the impact of any other
factor except frequency of the presence or absence of an item.

Poonam Punia
Ph.D Research Scholar

Deptt. of Computer Applications
Singhania University, Jhunjunu (Raj.)

poonamgill25@gmail.com
�

Surender Jangra
Deptt. of Computer Applications

GTB College, Bhawanigarh (Sangrur),Punjab
ssjangra20@rediffmail.com

�

��������������������������������������		��

�� �� !!������������ ��������� �

�

�

"# $%�������&�'$()�)���*�+��,��&�

�

3. Association Rule Mining
Since its introduction in 1993 by Agrawal , the task of association rule mining has received a great deal of attention.
Today the mining of such rules is still one of the most popular pattern-discovery methods in Knowledge Discovery
and Data mining (KDD) . Association rule mining is a popular data mining technique because of its wide application
in marketing and retail communities as well as other more diverse fields Association rule mining is a method of
finding relationships of the form X�Y amongst item sets that occur together in a database where X and Y are
disjoint itemsets.Support and confidence measures serve as the basis for customary techniques in association rule
mining. The support and confidence are predefined by users to drop the rules that are not so interesting or useful.
The association rule indicates that the transactions that contain X tend to also contain Y.

Suppose the support of an item is 0.1%, it means only 0.1 percent of the transaction contain purchasing of this item
[4]. The task of mining association rules is defined as follows:

Let IS ={i1,i2,i3,…,im} a set of items and TDI ={t1,t2,t3, …,tn}be a set of transaction data items,

where ti = {ISi1, ISi2, ISi3, …, ISip}, p � m and IS ij �ti , if X � I with k = |X| is called a k-item set or simply an
item set. An expression, where X, Y are item sets and X �Y = � �holds is called an association rule X � Y.

The measure of number of transactions T supporting an item set X with respect to TDI is

termed as the Support of an item set.

Support(X) ={T �TDI | X � T}TDI

The ratio of the number of transactions that hold X �Y to the number of transactions that hold X is said to be the
confidence of an association rule X � Y

Conf (X � Y) = Support(X �Y) Support(X)

In this paper, we have presented a comprehensive survey of the algorithms and techniques available for frequent
item set mining and association rule mining. The algorithms with the incorporation of economic utility factors have
also been presented. A comparative study has been performed through the thorough assessment of the results of the
algorithms and techniques on the basis of parameters utilized. The execution time and no of item generation and
time taken with the minimum threshold for mining frequent item sets were the chief factors deliberated during the
comparison.

4. Apriori Algorithm:

It is by far the most important data mining algorithms for mining frequent item sets and associations. It opened new
doors and created new modalities to mine the data. Since its inception, many scholars have improved and optimized
the Apriori algorithm and have presented new Apriori-like algorithms. Apriori uses a breadth-first search strategy to
count the support of item sets and uses a candidate generation function which exploits the downward closure
property of support. The Apriori algorithm search for large item sets during its initial database passes and uses its
results as the seed for discovering other large data sets during the subsequent passes. The Apriori algorithm is based
on the property of ant monotone that is if a set cannot pass a test, all its supersets fails the same test as well or in
other words all nonempty subset of a frequent item set must also be frequent. Key terms in Apriori algorithm are:-

Frequent Itemset: All the set of items whose support is greater than the user defined support then such item sets are
called frequent item sets. For example suppose T be transaction data base and S be the user defined minimum
support. An item set X � � is said to be frequent item set in T with respect to S if s(X) T=>=S. In other words the
set item which has minimum support is called frequent item sets.

Apriori property: Any subset of a frequent item set must be frequent (downward closure property) or any superset of
an infrequent item set must be infrequent (Upward closure property).

Join Operation: To find LK, a set of candidate K- item sets is generated by joining LK-1 with itself.

Prune Operation: Any (K-1)-item sets that is not frequent can not be a subset of a frequent K-item sets. Prune step
helps to avoid heavy computation.

��������������������������������������		��

�� �� !!������������ ��������� �

�

�

"# $%�������&�'$()�)���*�+��,����

�

5. FP-Growth Algorithm FP-Growth Method:
Construction of FP-Tree

a. First create a root of tree labeled with “Null”.

b. Scan database D second time as we scanned first time it to create 1-itemset and the L (L is sorted order of
1-itemset according to descending support count.)

c. The items in each transaction are processed in L order.

d. A branch is created for each transaction with item having their support count separated by colon.

e. Whenever the same node is encountered in another transaction, we just increment the support count of
common node or Prefix.

f. To facilitate tree traversal, an item header table is built so that each item points to its occurrence in tree via
a chain of node links.

g. Now the problem of mining frequent patterns in database is transformed to that of mining the FP-Tree.

6. ECLAT Algorithm:

 Both Apriori and FP_Growth methods mine frequent patterns from a set of transactions in horizontal format. (TID:
Itemset). While data can also be presented in the (Itemset: TID) format this format is known as vertical format. Eclat
can mine the frequent itemset in the vertical data format. The vertical data format of Database D) as in case of
Apriori) can be represented as in the table below.

Items Set TID

A {100, 103, 105, 107 }

B {102, 104 }

C {101, 102, 103, 104, 109 }

D { 100, 101, 102, 103,106, 107, 109}

E {105, 106, 108 }

F {101, 102, 103, 104, 105, 106, 108, 109 }

Vertical Data Format

The main difference between the Eclat and Apriori is that how they traverse the prefix tree in order to find the
support of an itemset. Apriori traverse the prefix tree in breadth first order. In breadth first order it first checks item
set of size 1, then item sets of size 2 and so on. Apriori determines the support of item set either by traversing for a
transaction all subset of currently processed size by incrementing the corresponding

item sets counters or by checking for each candidate item set which transaction it is contained in.

7. ReLim Algorithm

Recursive elimination algorithm process the transaction directly without the prefix tree. This algorithm is strongly
inspired from FP-Growth algorithm. FP-Growth algorithm is based on the prefix tree representation of dataset,
which saves a large amount of memory for storing the transaction. Relim algorithm deletes all items from
transaction that contains least frequent items, delete these items from transaction.

8. Experimental Results and Analysis
The results of all the algorithms discussed in the previous chapter are taken on the three different datasets of
different size (different number of items and different no of transactions). This data is available at

��������������������������������������		��

�� �� !!������������ ��������� �

�

�

"# $%�������&�'$()�)���*�+��,����

�

http://fimi.cs.helsinki.fi/data/. The support factor is changed while taking the results. These datasets are given as
follows.

S.No. Dataset Name Dataset Size No. of Transactions No. of Items Name used in Results

1. Kosrak 31.4 MB 990004 41270 11.txt

2. T40I10D100K 14.8 MB 10002 942 12.txt

3. T10I4D100K 3.93 MB 10004 870 13.txt

Summary of Results using Time and Min_Support Factor:- Dataset: Kosarak

Support Apriori (t1) Eclat (t2) FP-Growth (t3) Relim (t4)

0.5 2.11 2.88 2.56 1.98

1 0.92 0.56 0.39 0.73

1.5 0.23 0.27 0.14 0.42

2 0.11 0.13 0.03 0.19

Dataset: Kosarak Dataset: T40I10D100K

Support Apriori (t1) Eclat (t2) FP-Growth (t3) Relim (t4)

0.5 209.36 86.44 136.19 294.92

1 15.91 37.08 49.13 40.31

1.5 3.77 27.33 32.25 12.58

2 1.98 23.03 24.92 8.47

Dataset: T40I10D100K Dataset: - T10I4D100K

Support Apriori (t1) Eclat (t2) FP-Growth (t3) Relim (t4)

0.5 0.58 4.13 1.06 0.53

1 0.23 2.34 0.77 0.39

1.5 0.06 1.44 0.39 0.27

2 0.05 0.55 0.19 0.17

On the basis of execution time and Min_support we shows that Relim has better running time then all the three
algorithms followed by Apriori, Fp-Growth, Eclat when support is low (0.5) but with the increasing support (1, 1.5,
2) Fp-Growth performs well followed by Eclat, Relim and Apriori. at support (0.5) that is Eclat has better running
time followed by Fp-Growth, Apriori and Relim but with the increasing support Apriori performs better then others.

 Summary of Results using Min_Support and no. of Frequent Itemsets Generated:-

��������������������������������������		��

�� �� !!������������ ��������� �

�

�

"# $%�������&�'$()�)���*�+��,��.�

�

Support No. of Frequent Itemsets Generated

Apriori Eclat FP-Growth Relim

0.5 1618 1618 1618 1618

1 383 383 383 383

1.5 189 189 189 189

2 121 121 121 121

Dataset: Kosarak

Dataset: T40I10D100K

Support No. of Frequent Itemsets Generated

Apriori Eclat FP-Growth Relim

0.5 1282470 1282470 1282470 1282470

1 63671 63671 63671 63671

1.5 6509 6509 6509 6509

2 2289 2289 2289 2289

Support No. of Frequent Itemsets Generated

Apriori Eclat FP-Growth Relim

0.5 1068 1068 1068 1068

1 870 870 870 870

1.5 237 237 237 237

2 155 155 155 155

Dataset: - T10I4D100K

All the above three table shows that in each dataset the same no. of Frequent Itemsets are generated with respect to
same support. For Example in dataset T10I4D100K the no. of frequent itemsets generated by all the algorithms is
1068 with a support 0.5

9. Conclusion
It is clear from the above results that all the algorithms will generate the same number of frequent itemsets with
respect to a specific Min_Support on a given dataset. The execution time of all the algorithms in variable for
different datasets with a variation in Min_Support. The running time of different frequent item set mining algorithms
depends a lot on the structure of the data set. General statements are therefore difficult. On many standard
benchmark datasets Apriori is outperformed by FP-growth, but not on all. Apriori can perform well if the data set is
sparse and the average transaction size is small, in particular, if there are no long transactions, but is not necessarily.

��������������������������������������		��

�� �� !!������������ ��������� �

�

�

"# $%�������&�'$()�)���*�+��,����

�

Sparseness alone is not enough to perfectly predict the performance. So the performance of these algorithms
depends a lot on datasets (structure of dataset).

References

[1] Xindong WU . “ Data Mining : artificial intelligence in data analysis”. Proceedings of IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, 2004 PP.7.

[2] Han, Jiawei and Camber, Micheline. Data Mining : Concept and Techniques. San Franciso CA, USA, Morgen
Kufmann Publishers, 2001.

[3] R.Evans, and D.Fisher, “Overcoming Process Delays with Decision Tree Induction”, IEEE Expert, Vol.9, No.1,
1994, pp. 62-66.

[4] http://www.crisp-dm.org/CRISPWP-0800.pdf
[5] Introduction to Data Mining and Knowledge Discovery Third Edition by Two Crows Corporation
[6] Awan, M.S.K., Awais, M.M, “Data Mining - Redefining the Boundaries” IEEE/ACS International Conference

on Computer Systems and Applications, Amman, 2007, pp. 416-423
[7] Qi Luo “Knowledge Discovery and Data Mining”, Work shop on Knowledge Discovery and Data Mining,

2008, Adelaide, SA , pp.3-5
[8] Lobur M., Stekh Yu., Kernytskyy A, Sardieh F.M.E. “Some trends in Knowledge Discovery and Data Mining”

International Conference on Perspective Technologies and Methods in MEMS Design, 2008. EMSTECH 2008,
21-24 May 2008 PP. 95 – 97

[9] Tian Lan; Runtong Zhang; Hong Dai “A New Frame of Knowledge Discovery” First International Workshop
on Knowledge Discovery and Data Mining, WKDD 2008, 23-24 Jan. 2008, Page(s):607 – 611

[10] Yi Peng; Gang Kou; Yong Shi; Zhengxin Chen, “A Systemic Framework for the Field of Data Mining and
Knowledge Discovery”, ICDM Workshops 2006. Sixth IEEE International Conference Dec. 2006 pp 395 – 399

[11] Fu, Yongjlan “Data Mining: Tasks, techniques and applications” IEEE Potentials, (1997), pp.18-20.
[12] Lam N.S. “Discovering Association Rules in Data Mining” Department of Computer Science, University of

Illinois at Urbana-Champaign [Online]. Available: www.raymond-lam.com/CS411.doc
[13] Agrawal R., Srikant R. “Fast Algorithm for Mining Association Rules”, Proceedings of the 20th VLDB

Conference Santiago, Chile, 1994 , pp. 487-499.
[14] Wojciechowski M., Galecki K., Gawronek K. “Concurrent Processing of Frequent Itemset Queries Using FP-

Growth Algorithm” [Online]. Available: http://www.cs.put.poznan.pl/mwojciechowski/papers/admkd05a.pdf
[15] Thieme S. L., “Algorithmic Features of Eclat”, [Online]. Available: http://ftp.informatik.rwth-

aachen.de/Publications/CEUR-WS/Vol-126/schmidtthieme.pdf
[16] Borgelt C. “Efficient Implementations of Apriori and Eclat”, 2003 [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?
[17] Pei, Jian^Han, Jiawei^Lu, Hongjun^Nishio, Shojiro^Tang, Shiwei^Yang, Dongqing , “H-Mine: Fast and space-

preserving frequent pattern mining in large databases” IIE Transactions , June, 2007, pp. 593-605
[18] C. Borgelt, “Keeping things simple: finding frequent item sets by recursive elimination” International

Conference on Knowledge Discovery and Data Mining, Chicago, Illinois, 2005, pp: 66-70

